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1  Introduction 

An autonomous vehicle can be loosely defined as a vehicle that needs no human supervision or 

human control. The National Highway Traffic Safety Administration (NHTSA) provides a more 

detailed definition with five levels of classification (NHTSA, 2013):  

Level 0: The driver completely controls the vehicle at all times.  

Level 1: Individual vehicle controls are automated, such as electronic stability control or 

automatic braking.  

Level 2: At least two controls can be automated in unison, such as adaptive cruise control 

in combination with lane keeping.  

Level 3: The driver can fully cede control of all safety-critical functions in certain 

conditions. The car senses when conditions require the driver to retake control and provides a 

“sufficiently comfortable transition time” for the driver to do so.  

Level 4: The vehicle performs all safety-critical functions for the entire trip, with the driver 

not expected to control the vehicle at any time. As this vehicle would control all functions from 

start to stop, including all parking functions, it could include unoccupied cars.  

Society of Automotive Engineers (SAE) International provides an alternative classification 

system (SAE International, 2014), but in this study we utilize the NHTSA classification and 

viewed an autonomous vehicle as a Level 4 classification. 

One of the challenges for deployment of Level 4 automation is that automated vehicles will have 

to interact with human drivers in other cars. Unfortunately, human drivers do not always 

communicate their decisions clearly, leading to near crashes and crashes. Because of this, these 

autonomous vehicles will have to learn how to predict human-driver decisions using information 

conveyed by the human driver’s vehicle. 

In this study, we hypothesized that the kinematic behavior of a human-driven vehicle would 

provide enough information to make a good prediction of driver intent within a short time frame. 

In particular, we studied the kinematic behavior of a human-driven vehicle, based on the 

vehicle’s speed. We focused on the prediction of whether a human driver would stop at an 

intersection before executing a left turn. We believe that once the prediction model of such a 

simple driving behavior is fine-tuned to produce satisfactory prediction results, we can then 

extend this model to other forms of driving behavior. Our ultimate goal is to develop a prediction 

model of human driving behavior using the vehicle speed from the human-driven vehicle. 

To build the prediction model, we used naturalistic driving data from about 100 licensed drivers 

in Michigan. We converted the time-series data to a distance series and defined a new distance-

varying outcome. Because it seems likely that recent speeds contain more information about the 

human driver’s intention to stop compared with past speeds, we employed a moving window on 
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the distance-varying speeds. We next used Principal Components Analysis (PCA) to reduce the 

number of variables used in our prediction algorithm. To link our distance-varying outcomes to 

our Principal Component (PC) variables, we used the Bayesian Additive Regression Trees 

(BART). We evaluated our BART model’s prediction performance at every meter away from the 

center of an intersection by using the Area Under the receiver operating characteristic Curve 

(AUC). Finally, to visually search for an optimal predicted probability cutoff level that would 

balance both unnecessary stops by the autonomous vehicle and a crash, we plotted the capture 

ratio (CR) and false positive ratio (FPR) profile. 

The rest of the paper is organized as follows: In section 2, we provide additional details on the 

dataset, data manipulation, and statistical methods. In section 3, we present the results of our 

analysis and finally in section 4, we discuss what we learned. 

2  Data and Methods 

2.1  Data 

We obtained our dataset from a previous study, known as the Integrated Vehicle-Based Safety 

Systems (IVBSS) study (Sayer et al., 2011). The data were collected from 108 licensed drivers in 

Michigan between April 2009 and April 2010. Sixteen late-model Honda Accords were fitted 

with cameras, recording devices, and a collision-warning system to collect visual and kinematic 

data from the drivers for a total of 40 days each: 12 days baseline period with systems switched 

off followed by 28 days with systems activated. We used the 12 days baseline unsupervised 

driving data for this analysis. Because information about road types and intersections outside 

Michigan were not available, we restricted our analysis to driving within Michigan to facilitate 

the accurate identification of an intersection and its associated road type. Accurate identification 

of an intersection allowed us to determine a reference time to start extracting the information 

necessary for this analysis. 

In this study, we had data from 108 drivers who made 3,795 turns. Of these 3,795 turns, 1,823 

were left turns. We took the time at which the vehicle was 100 m away from the center of an 

intersection to which it was heading as the reference point for the start of data extraction and 

stopped extraction at the time the vehicle was beyond the center of an intersection. We extracted 

both the speed of the vehicle (in m/s) and the amount of distance traveled (in m) at 10 ms 

intervals starting from our reference point. We also defined a vehicle as stopped when its speed 

was ≤ 1m/s. 

2.2  Data manipulations 

To create an algorithm that could be implemented, we first had to reference intersections by 

distance rather than time. To that end, we converted our time series of vehicle speeds to a 

distance series starting from -100 m away from the center of an intersection to -1 m away from 

the center of an intersection at every 1 m interval.  
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In addition to converting our time series to a distance series, we defined a distance-varying 

outcome. This was done because we were interested in the question “Will the human-driven 

vehicle stop in the future? ” at every meter away from the center of an intersection. An additional 

reason for defining a new distance-varying outcome was that we found turns where the vehicle 

stopped early. If we defined an overall outcome for each turn based on whether the vehicle 

stopped at any point during the whole turn maneuver, the prediction model would be influenced 

by behavior unrelated to decision-making related to the execution of the turn. Instead, we define 

“stopping in the future” at each point in time as referring only to future time points. In other 

words, the outcome is not a single value defined for the whole maneuver (the driver stopped at 

some point) but a variable value defined at each point. 

Hence, to define the new distance-varying outcome, we employed the following notation. Let i 

be the ith turn and j be the jth meter away from the center of intersection, j=−100,…,−1. Let sij 

be the new distance series of vehicle speed and yij be the distance-varying outcome (1=stopped 

in future, 0=will not stop in future) of the ith turn at j be the jthm. Then, we defined yij as 

follows: 

1. If sij>1m/s ∀ j=−100,…,−1 , then set yij=0 ∀ j.  

2. If sij≤1m/s for some j∈{−100,…,−1}, let c∈{−100,…,−1} be the index such that ∀ j>c, 

sij>1m/s. We set yi,−100=yi,−99=…=yi,c=1  and yi,c+1=yi,c+2=…=yi,−1=0 .  

Point 1 means that if the new distance-series speed profile of a particular turn was more than 

1m/s throughout, the distance-varying outcome would be set to 0 throughout. figures 1 and 2 

clarify point 2. figure 1 corresponds to the new distance series of Driver 40 Trip 34 Turn 1. The 

horizontal line indicates 1m/s. We can see that for j>−19, the speed of the vehicle was more than 

1m/s. Hence in figure 2, the distance-varying outcome yij is set to 0 for j=−18,…,−1. On the 

other hand, because for j=−100,…,−19, the speeds sij could be less than or equal to 1m/s, we set 

their distance-varying outcome to 1.  

  

  



 7 

 

Figure 1: Example distance-series speed profile of Driver 40 Trip 34 Turn 1. 

  

 

Figure 2: Distance-varying outcome for the speed profile of Driver 40 Trip 34 Turn 1. 

2.3  Statistical methods 

With the conversion and definition of the distance-varying outcome in place, we began 

developing our prediction model by first employing a moving window of speeds. This was done 

because, as the vehicle approached the center of the intersection, recent vehicle speeds contained 

information on whether a human driver will decide to stop. The full profile of a vehicle’s past 

speeds may include this information as well, but they may also contain irrelevant information 
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making the full profile of a vehicle’s past speeds “noisier” compared with a window of recent 

speeds.  

Next, we used Principal Components Analysis (PCA) on these windows to reduce the number of 

covariates in our prediction model. We found that the first three PCs explained at least 99% of 

the variation in speed regardless of the location of the moving window (See figure 3). Hence, the 

first three PCs were used as the predictors in our model. 

 

Figure 3: Principal Component loadings for the first, second, and third PC from -95m to -90m, -

70m to -65m, -45m to -40m, and -20m to -15m (left to right).  
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To link our distance-varying outcomes to the first three PCs, we employed the BART model 

developed by Chipman et al. (2010). BART models the mean outcome (typically continuous) as 

a function of covariates by a sum of regression trees and incorporates the additive effects of 

predictors. Because we had binary outcomes, we needed to modify the BART formulation 

slightly. Following the recommendation of Chipman et al. (2010) , we linked our distance-

varying outcome to BART using a probit model. 

To evaluate our prediction model at every jth meter away from the center of the intersection, we 

plotted the AUC value and its 95% confidence interval (CI) at every jth meter. AUC calculates 

the proportion of observed outcomes that were ranked higher in terms of their predicted 

probability compared with the observed nonoutcomes. Thus, a value close to 1 indicates that the 

prediction model is performing much better than chance while a value close to 0.5 indicates that 

the prediction model performs no better than chance. We computed the CI of the AUC using the 

method of Hanley and McNeil (1982), which uses a linear approximation of the AUC to the 

Somer’s D statistic to obtain an estimate of the variance of AUC. 

In addition to the AUC, we plotted the profile of the Capture Ratio (CR), the y-axis of the 

Receiver Operating Characteristic (ROC) curve, the profile of the False Positive Ratio (FPR), 

and the x-axis of the ROC curve. For both profiles, we plotted them at nine different predicted 

probability cutoffs. Plotting the CR and FPR profile allowed us to find the optimal predicted 

probability cutoff that will balance the probability of an unnecessary stop by the autonomous 

vehicle and the probability of a crash between the autonomous vehicle and a human-driven 

vehicle. 

3  Results 

Our dataset contained 1,823 left turns: 894 of these turns started on major surface-road types, 

613 started on minor surface roads, and 316 were started on local roads. Major surface-road 

types include roads supporting moderate travel within cities and quick travel between cities;  

minor surface roads include roads supporting moderate speed travel between neighborhoods. 

Local roads are defined as roads that support lower speed travel between neighborhoods. We 

also found 812 eventual stops defined as sij≤1m/s for some j∈{−100,…,−1}. The average speed 

in all turns was 10.5 with a standard error of 4.2 and each driver took about 17 left turns (16.9, 

standard error 10.8). We determined the length of our moving window w by using a 10-fold cross 

validation AUC (cvAUC) with the first three PCs as the variables and BART as the prediction 

model. We compared the cvAUC profiles with w from 3 to 50. We chose a window length of 6 

because the 10-fold cvAUC profile was higher compared with window lengths of 3, 4, and 5 

from -95m to -30m. Similarly, for distances more than -30m, the cvAUC of window length 6 

was more than that of window lengths 7, 8, 9, and 10.  
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Figure 3 shows the coefficients of the PCs allocated to the speeds from -95m to -90m, -70m to -

65m, -45m to -40m, and -20m to -15m (left to right). Aside from the first three PCs explaining 

nearly 99% of the variation in the moving windows for all j, we also noted that the coefficient 

profile showed remarkable consistency throughout the approach to the center of intersection. The 

first PC is a form of average speed, and the second PC resembles a form of acceleration or 

deceleration.  

Our BART model with w=6 and using the first three PCs as predictors produced fairly good 

AUC results (figure 4). The AUC profile together with its 95% CI were all above 0.7 throughout 

the left-turn maneuver. Our AUC profile was 0.75 at -95m away from the center of intersection 

and steadily increased to over 0.80 by -60m out. It reached 0.90 by -25m out, and increased to 1 

as the vehicle approached the center of intersection.  
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Figure 4: Area Under the receiver operating characteristic Curve (AUC) profile with 95% 

confidence interval (CI) of the BART prediction model.  

Figure 5 shows the CR and FPR profiles under nine different predicted probability cutoffs, from 

10% to 90% in 10% intervals. By a x% predicted probability cutoff, we mean that for any 

predicted probability produced by our BART prediction model, those that were more than x% 

were labeled as stops and those that were less than or equal to x% were labeled as nonstops. The 

CR then looks at the proportion of actual stops that were labeled correctly as stops and the FPR 

looks at the proportion of nonstops that were labeled incorrectly as stops. The solid lines in 

figure 5 represent the CR and are equivalent to the autonomous vehicle correctly predicting that 

the human-driven vehicle would stop using our BART model with the particular predicted 

probability cutoff. The dotted lines represent the FPR and are equivalent to the autonomous 

vehicle incorrectly predicting that the human-driven vehicle would stop. In this scenario, there 
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would be risk of a crash if the autonomous vehicle assumed the human would stop and continued 

on a conflicting path.  

  

  

 

Figure 5: Capture Ratio (CR) and False Positive Ratio (FPR) profiles under nine different 

predicted probability cut-offs. 

4  Discussion 

In this study, we showed how we could use the kinematic behavior of speed from a human-

driven vehicle to predict the human driver’s decision of stopping before executing a left turn. We 

employed a moving window of vehicle speeds to capture relevant information for prediction and 
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used PCA to reduce the number of variables in our model. We then employed a recently 

developed model, BART, to link our distance-varying outcome to the PC variables. Finally we 

evaluated our prediction model by plotting the AUC, CR, and FPR profiles. 

Six meters of speed data at each jth meter away from the center of intersection gave us good 

cvAUC performance both near to and far from the center of intersection. We used the first three 

PCs as the covariates in our prediction model because they explained at least 99% of the 

variation in the 6m window of speeds at each jth meter. Our BART model produced an AUC of 

0.75 at -95 m away from the center of intersection and this value increased steadily to 1 as the 

vehicle approaches the center of intersection.  

We decided to use PCA as the method to reduce the number of variables in our model because of 

the surprising consistency we found in the profile of the PC coefficients (figure 3). We did not 

base our choice of the first three PCs as the variables in our model only on the amount of 

variation in  explained. Since our ultimate goal was prediction, we investigated how much 

prediction performance would be added with the inclusion of the first five PCs in terms of AUC. 

We found large increases in the AUC profile when the first two PCs were added and a 

meaningful increase when the third PC was added. When the fourth and fifth PC were added, we 

found no improvement in the AUC profile. Moreover, when we plotted the PC values of the 

fourth PC and above, we found them to be inconsistent and difficult to interpret. We also 

considered using speed and acceleration in place of the first and second PC, given their 

resemblance to these quantities. However, we found that when we attempted this replacement, 

the resulting AUC profile was substantially lower compared to the AUC profile from using the 

PCs. Another alternative to using the first three PCs was the direct use of the 6m of speed as 

variables in the BART model. The rationale of this method was we can view the first three PCs 

as linear combinations of the 6 m of speed since Xj(q)=Mju(j)(q). So the use of the first three PCs 

and the 6 m of speed data would produce similar results. In addition, PCA involves matrix 

multiplications, which could slow down computation when the number of observations increase. 

Unfortunately, this alternative method does not produce an AUC profile better or comparable to 

the AUC profile produced using the first three PCs. We suspect the reason is that PCA extracts 

useful information from the 6 m of speed data. And by using all the information from the 6 m of 

speed data, some noise may have been added. 

We also considered many prediction models as alternatives to the BART model including the 

linear logistic regression model with the first three PCs as covariates, the non-linear logistic 

regression model using cubic splines with a knot at the mean of each of the three PCs, and the 

Super-Learner (van der Laan and Polley, 2010). The Super-Learner is an ensemble method that 

combines the prediction result of any machine learning to obtain a better prediction model. The 

AUC profile of the BART model was better compared to the linear and nonlinear logistic 

regression model. Although the AUC profile of the Super-Learner was somewhat better 

compared to BART, the improvement over BART Super-Learner produced was highly variable 
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with various distances performing the same as BART. Therefore, we chose BART as our 

prediction model. 

Although our BART model performed well in predicting a pre-left-turn stop, there is still room 

for improvement. First, we did not use other baseline covariates such as presence of a lead 

vehicle, distance from the center of intersection when a turn signal was first activated, and many 

others. Including these variables may improve the performance of our prediction model further 

away from the center of intersection. We were less concerned about the performance near the 

center of intersection since the AUC of our model was already close to 1. We intend to 

investigate which covariates should be included to improve performance by using the BART 

variable-selection method proposed in Bleich et al. (2014). A point to note here is that the 

inclusion of variables such as the gender and age of the driver may not be practical because it is 

unlikely that the sensors equipped on an autonomous vehicle would be able to capture such 

information. 

Second, we are aware that our naturalistic driving data were collected from the same drivers 

traveling on similar road types multiple times. This implies that our assumption that each turn is 

independent from the other may be violated since there could be some form of intradriver or 

intraroad type correlation between turns. We believe this can be solved by extending the BART 

model to include a random intercept. Preliminary results by stratification showed promise, and 

we are currently working on implementing a random intercept BART model to our data. 

Finally, on closer inspection of our nine different CR and FPR profile plots, we can see that 

different predicted probability cutoffs could be proposed at different distances instead of one 

overall cutoff. This implies that different decisions could be made at different distances 

depending on the cost we decide to allocate to either, correctly predicting a driver stop and hence 

avoiding unnecessary stops in the autonomous vehicle, or incorrectly predicting a driver stop and 

hence resulting in a crash with the human-driven vehicle. To obtain the different optimal cutoffs 

that would balance the CR and FPR at each distance, we suggest attaching different costs to the 

CR and FPR at each j and then employing numerical methods to solve for the optimal cutoff.  

5 Recommendations 

The goal of this project was to use statistical prediction methods to tie ongoing kinematic 

behavior to a near-future decision made by a driver. A good prediction model operating in real 

time could provide much-needed information about human drivers’ decisions to help inform the 

operation of nearby automated vehicles.  

The prediction performance of our model with no other information than speed was good enough 

to suggest that this approach has real promise. We expect that additional information, especially 

about the location of any oncoming vehicle, will improve prediction, especially close to the 

intersection. 
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We recommend further work to improve the model with better methods (especially taking 

account of within-driver variability) and additional predictors (especially the proximity of 

oncoming vehicles). In addition, a next step should build a feedback loop into the model to 

simulate the way in which the behavior of the automated (oncoming) vehicle might alter the 

behavior of the human-driven vehicle.  
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